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The vibration response of a spring–mass–damper system with a parametrically excited
pendulum hinged to the mass is investigated using the harmonic balance method. The
approximate results are found to be fairly consistent with those obtained by the numerical
calculation. The vibrating regions of the pendulum system are obtained which are similar to
those given by Mathieu’s equation. Based on the analysis of three parameters in the
response equation, the characteristics of response of the system are clarified. The stabilities
of the harmonic solutions are analyzed, and finally our proposed approximation is verified
compared with the numerical results.

# 2002 Elsevier Science Ltd. All rights reserved.
1. INTRODUCTION

There have been a few reports on the analysis of a two-degree-of-freedom dynamic
vibration absorber system using a parametrically excited pendulum. Haston and
Barr [1] introduced an autoparametric vibration absorber system in which the response
is limited to be harmonic, and studied the vibration characteristics of the so-called
model ‘‘autoparametric vibration absorber’’. Bajaj et al. [2] used the method of averaging
to study forced, weakly non-linear oscillations of a two-degree-of-freedom auto-
parametric vibration absorber system in resonant excitation. A complete bifurcation
analysis of the averaged equations is undertaken for the subharmonic case of both internal
and external resonances, where the first order approximation of system response is
obtained. Banerjee et al. [3] presented a detailed stability analysis for the same system
using the second order averaging of the system. Hatwal et al. [4, 5] employed the harmonic
balance method and direct numerical integration to study a variant of the same system
at moderately higher levels of excitation, and observed that over some ranges of force
frequency and amplitude, the system response presented an amplitude and phase
modulated harmonic motion. For higher excitation levels, the response was found to
be chaotic. Also, Hatwal et al. [6] studied the characteristics of the autoparametric
vibration absorber system in which two types of restoring force on the pendulum were
considered. Furthermore, Yabuno et al. [7] investigated the stability of 1/3 order
subharmonic resonance of the system.

In these studies, the vibration characteristics of the system such as the steady state
solutions, and conditions causing bifurcation and chaotic motion, were investigated using
0022-460X/02/$35.00 # 2002 Elsevier Science Ltd. All rights reserved.
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approximate methods. However, the methods used in these studies either depend on a
small parameter, or are very complicated. Therefore, it is necessary to consider how to
make analytical process simple.

We observed the response of a dynamic vibration absorber system using a
parametrically excited pendulum by the numerical calculation in the previous study [8].
The vibration-absorber characteristics of the system for the change of the parameters are
clarified. Based on the analysis of the vibration-absorber characteristics, the optimum
parameters of the system are obtained. In this paper, the characteristics of responses of the
primary system and pendulum are analyzed using the harmonic balance method and the
third order approximation of Taylor’s series. The behavior of the system is clarified, and
our approximation is also verified by comparing with the numerical solutions.

2. EQUATIONS OF MOTION

Figure 1 shows the two-degree-of-freedom dynamic vibration absorber system with a
parametrically excited pendulum, in which the primary system consists of the mass M; the
linear spring with stiffness k; and the viscous damper represented by coefficient c: The
second system comprises of a simple pendulum of mass mp hinged at M: The distance
between the supporting point and the center of gravity of the pendulum is l; J and cy
represent the inertia moment with respect to the supporting point and the damping
coefficient of the pendulum respectively. The primary system is excited directly by a
harmonic force f ðtÞ ¼ F cosot:

The equations of motion of the system are

ðM þ mpÞ .xx þ c ’xx þ kx þ mplð.yy sin yþ ’yy
2
cos yÞ ¼ f ðtÞ; ð1Þ

J .yyþ cy ’yyþ ðmpgl þ mpl .xxÞsin y ¼ 0; ð2Þ
where x is the displacement of M; y the angle of rotation of the pendulum, and the dot
denotes the derivative with respect to the time t:

Equations (1) and (2) can be written in the following non-dimensional forms:

u00 þ 2z
1 þ l

u0 þ 1

1 þ l
u þ l

qð1 þ lÞ ðy
00sinyþ y02cosyÞ ¼ 1

1 þ l
coszt; ð3Þ

y00 þ 2zppy0 þ ðp2 þ mqu00Þsiny ¼ 0; ð4Þ
c

k

f(
t)

θ

o

M

c

G
m p

l
Jθ

x

Figure 1. Autoparametric dynamic vibration absorber system.
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where

2e ¼ c=M; o2
n ¼ k=M; l ¼ mp=M; o2

p ¼ mpgl=J;

m ¼mpl2=J; 2ep ¼ cy=J; xst ¼ F=k;

u ¼ x=xst; p ¼ op=on; z ¼ o=on;

q ¼ xst=l; z ¼ e=on; zp ¼ ep=op; t ¼ ont

and the prime in equations (3) and (4) represents the derivative with respect to the non-
dimensional time t:

3. HARMONIC SOLUTIONS OF THE SYSTEM

Since the exciting force f ðtÞ on the right-hand side of equation (1) is harmonic, the
steady state solution of the primary system is supposed to be harmonic with the same
frequency z as the exciting force. On the other hand, that of the pendulum is taken as
harmonic with frequency v ¼ z=2 due to parametrically excited vibration. i.e.,

u ¼ Acosðztþ fÞ; y ¼ Bcosðvtþ jÞ: ð5; 6Þ

Expanding sin y and cos y terms in equations (3) and (4) to the third order in Taylor
series, and substituting equations (5) and (6) into equations (3) and (4), the following
equations are obtained:

� Az2 cosðztþ fÞ þ 2z
1 þ l

ð�Az sinðztþ fÞ þ 1

1 þ l
A cosðztþ fÞ

þ l
qð1 þ lÞ �v2B2 þ v2B4

12

� �
cosðztþ fÞcosð2j� fÞ

�

þ v2B2 � v2B4

12

� �
sinðztþ fÞsinð2j� fÞ þ v2B4

12
cos4ðvtþ jÞ

!

¼ 1

1 þ l
ðcosðztþ fÞcosfþ sinðztþ fÞsinfÞ; ð7Þ

� v2 þ p2B2

8
� p2

� �
B cosðvtþ jÞ � 2zppvB sinðvtþ jÞ

� mqAz2B

2
1 � B2

6

� �
cosðvtþ jÞcosð2j� fÞ � mqAz2B

2

� 1 � B2

12

� �
sinðvtþ jÞsinð2j� fÞ � p2B3

24
cos 3ðvtþ jÞ

� mqAz2B

2
1 � B2

8

� �
cos3ðvtþ jÞcosð2j� fÞ � mqAz2B

2

� 1 � B2

8

� �
sin3ðvtþ jÞsinð2j� fÞ þ mqAz2B3

48
cosð5vtþ 3jþ fÞ ¼ 0: ð8Þ
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By comparing coefficients of corresponding sine and cosine terms, the following four
equations are obtained:

1

1 þ l
� z2

� �
A � lv2B2

qð1 þ lÞ 1 � B2

12

� �
cosð2j� fÞ ¼ 1

1 þ l
cos f; ð9Þ

� 2zz
1 þ l

A þ lv2B2

qð1 þ lÞ 1 � B2

12

� �
sinð2j� fÞ ¼ 1

1 þ l
sin f; ð10Þ

v2 � p2 þ p2

8
B2 þ mqz2A

2
1 � B2

6

� �
cosð2j� fÞ ¼ 0; ð11Þ

2zppv þ mqz2A

2
1 � B2

12

� �
sinð2j� fÞ ¼ 0: ð12Þ

Equations (9) and (10) yield

A2 ¼ R2

T
� 1

T

S2z4

16
þ Sp2

8mq
ðR � z2Þ

� �
B4 þ S

2mq
f2ðR � z2Þðz2=4 � p2Þ þ 4zzpRpz2gB2

� �
;

ð13Þ

tanf ¼ �2RzzA þ
2Szpp3zB2

mqA

� ��
ðR � z2ÞA þ 2Sp2B2ðv2 � p2 þ p2B2=8Þ

mqA

� �
ð14Þ

and equations (11) and (12) yield

A2 ¼ 4

ðmqz2Þ2
ðz2=4 � p2Þ2 þ ðzppzÞ2 þ p4

64
B4 þ p2ðz2=4 � p2Þ

4
B2

� �
; ð15Þ

tanð2j� fÞ ¼ zppz= z2=4 � p2 þ p2

8
B2

� �
; ð16Þ

where

R ¼ 1

1 þ l
; S ¼ l

qð1 þ lÞ; T ¼ ðR � z2Þ2 þ ð2zRzÞ2:

Here 1 � B2=6 and 1 � B2=12 are regarded as one; however, their detailed description is
given later.

3.1. VIBRATION REGIONS OF THE PENDULUM SYSTEM

Setting amplitude B of the pendulum in equations (13) and (15) as zero, then the
following equations are obtained:

A2
1 ¼ R2=T ; A2

2 ¼
4

ðmqz2Þ2
½ðz2=4 � p2Þ2 þ ðzppzÞ2�: ð17; 18Þ

Here, A1 is the amplitude of the primary system when the pendulum does not vibrate
(locked mass), and A2 can be considered as the amplitude of the first order vibration
region of the pendulum. The reasons can be explained as follows.

When y is so small, sin y is replaced by y in equation (4) rendering it to the following
form:

y00 þ 2zppy0 þ ½p2 þ mqu00�y ¼ 0: ð19Þ
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Equation (19) is identical to Mathieu’s equation [9] with additional damping term. It
can be transformed into the standard form as

d2g
ds2

þ ðd � 2e cos2sÞg ¼ 0; ð20Þ

where

2s ¼ ztþ f; g ¼ y expð2zpps=zÞ; d ¼ 4p2ð1 � z2pÞ=z2; e ¼ 2mqA;

where g is the function of s and s; where s is a parameter with respect to d and e:
y in equation (20) can be expressed as follows:

y ¼ gðs; sÞexpð�2zpps=zÞ: ð21Þ
By considering the first order term of e; the following are obtained:

d � 1 � e cos2s; �2zpp=z � �1
2
e sin2s: ð22; 23Þ

Substituting the expressions of d and e into equations (22) and (23) yields

z2

4
� p2 þ z2pp2

� �
� mqAz2

2
cos2s ¼ 0; zppz � mqAz2

2
sin2s ¼ 0: ð24Þ

Moreover, the following equation is derived from equation (24):

A2 ¼ 4

ðmqz2Þ2
½ðz2=4 � p2 þ z2pp2Þ2 þ ðzppzÞ2�: ð25Þ

It is clear that A2 denotes the amplitude of the oscillating boundary of the pendulum
system by comparing equation (25) with equation (18). Therefore, the vibration of the
pendulum must occur if A1 is larger than A2 ½10�:

3.2. HARMONIC SOLUTIONS OF THE SYSTEM

The amplitude A of the primary system determined by equations (13) and (15) must
coincide while the pendulum is oscillating. Hence, the equation related to the amplitude B

of the pendulum is described as

1

T

S2z4

16
þ Sp2

8mq
ðR � z2Þ

� �
þ 1

ðmqz2Þ2
p4

16

" #
B4

þ 1

T

S

2mq
2ðR � z2Þðz2=4 � p2Þ þ 4zzpRpz2

� �
þ P2ðz2=4 � p2Þ

ðmqz2Þ2

" #
B2

þ 4

ðmqz2Þ2
½ðz2=4 � p2Þ2 þ ðzppzÞ2� � R2

T
¼ 0

ð26Þ

and the amplitudes of both primary system and pendulum can be obtained by

B2 ¼ �b 
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � 4ac

p

2a
; A2 ¼ 4

ðmqz2Þ2
z2=4 � p2 þ p2B2

8

� �2

þðzPpzÞ2
" #

; ð27; 28Þ
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where

a ¼ 1

T

S2z4

16
þ Sp2

8mq
ðR � z2Þ

� �
þ p4

16

1

ðmqz2Þ2
; ð29Þ

b ¼ 1

T

S

2mq
2ðR � z2Þ z2

4
� p2

� �
þ 4zzpRpz2

� �
þ ðz2=4 � p2Þp2

ðmqz2Þ2
; c ¼ A2

2 � A2
1: ð30; 31Þ

From equations (27) and (28), the relation between the amplitudes of primary system
and pendulum is determined when they exhibit harmonic vibration. Thus, it is recognized
that there are at most two steady state solutions at their respective frequencies for
equations (5) and (6).

Setting the parameter a in equation (29) as zero, and neglecting the higher order terms
of z; yields

p4

16
1 þ 2SRmq

p2

� �
z4 � p4R

8
ð1 � 2Rz2Þz2 þ p4R2

16
¼ 0: ð32Þ

There is no real solution for equation (32), hence the parameter a may not become zero.
Also a is represented as a continuous function of z; and it becomes positive when z is so
small. Therefore, a can be regarded as positive. Accordingly, the variation of the solution
of B in number can be verified simply by evaluating whether the sign of b and c is positive
or negative, which is summarized as follows:

Case I: c50; there is only one solution for B no matter b is positive or negative.
Case II: c ¼ 0; there are two solutions for B if b50; such as 0 and

ffiffiffiffiffiffiffiffiffiffiffi
�b=a

p
respectively.

However, there is only one solution that is equal to zero if b > 0:
Case III: c > 0; if b50 and ðb2 � 4acÞ > 0; there are two solutions for B: On the other

hand, for the case of b > 0 or ðb2 � 4acÞ50; there is no solution.
Figure 2 shows an image about the number of solutions for amplitude B: The curve is

drawn through calculating the values of b and c in terms of z; while z is determined by
setting ðb2 � 4acÞ ¼ 0 with the condition of zp ¼ 0�00120�01:

If 1 � B2=6 and 1 � B2=12 in equation (26) are considered and they are written in the
following forms:

a ¼ 1 � B2=12; b ¼ 1 � B2=6:

Equation (26) becomes

1

T

S2z4

16
a2 þ Sp2

8mq
ðR � z2Þa

b

� �
þ 1

ðmqz2Þ2
p4

16b2

" #
B 4

þ 1

T

S

2mq
2ðR � z2Þðz2=4 � p2Þa

b
þ 4zzpRpz2

� �
þ P2ðz2=4 � p2Þ

ðmqz2Þ2b2

" #
B2

þ 4

ðmqz2Þ2
ðz2=4 � p2Þ 1

b2
þ ðzppzÞ2 1

a2

� �
� R2

T
¼ 0: ð33Þ

Equation (33) gives the improved solution of the harmonic balance method.
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Figure 2. The number of solutions changes along with the parameter a; b; c (z ¼ 0�01; m ¼ 0�5; l ¼ 0�1;
q ¼ 0�01; zp ¼ 0�00120�01) ðb2 � 4acÞ ¼ 0 }}; one solution I(1); two solutions II(2); no solution III(0).
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3.3. STABILITYOF HARMONIC SOLUTION

In order to investigate the stability of the harmonic solutions (5) and (6), small variables
from periodic state denoted by dð Þ are given as follows:

A ¼ A0 þ dA; f ¼ f0 þ df; B ¼ B0 þ dB; j ¼ j0 þ dj; ð34Þ

where A0; B0; f0; j0 are the solutions obtained by the harmonic balance method.
Substituting equations (34), (5) and (6) into equations (3) and (4), and equating the
respective coefficients of sine and cosine terms the following four equations are obtained:

2RzdA0 þ ðR � z2ÞdA � 2A0zdf0 � 2RzA0zdfþ S½�2B0vbsin cdB0

� 2B0v2b coscdB � 2B2
0va cos cdj0 þ 2B2

0v2a sin cdj� ¼ 0; ð35Þ

� 2zdA0 � 2RzdA � 2RzA0df
0 þ A0ðz2 � RÞdfþ S½�2B0vb cos cdB0

þ 2B0v2b sin cdB þ 2B2
0va sin cdj0 þ 2B2

0v2a cos cdj� ¼ 0; ð36Þ

mqB0zb sin cdA0 � 0�5mqB0z2b cos cdA

� mqA0B0zb cos cdf0 � 0�5mqA0B0z2b sin cdf

þ 2zppdB0 þ P2 � v2 � 3

8
p2B2

0

� �
� 0:5mqB0z2 1 � B2

0

2

� �
cos c

� �
dB � 2B0vdj0

þ �2zppB0v þ 0�5mqA0B0z2 1 � B2
0

4

� �
sinc

� �
dj ¼ 0; ð37Þ

� mqB0za cos cdA0 � 0�5mqB0z2a sin cdA

� mqA0B0za sincdf0 þ 0�5mqA0B0z2a cos cdf

� 2vdB0 þ �2zppv � 0�5mqA0z2 1 � B2
0

4

� �
sin c

� �
dB

� 2zppB0dj0 þ B0 P2 � v2 þ 1

8
p2B2

0

� �
� 0�5mqA0z2 cos c

� �
dj ¼ 0; ð38Þ
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where c ¼ 2j� f: Assuming

dA ¼ X1e
l1t; df ¼ X2e

l1t; dB ¼ X3e
l1t; dj ¼ X4e

l1t: ð39Þ
Substituting equation (39) into equations (35)–(38) yields

a11 a12 a13 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

2
6664

3
7775

X1

X2

X3

X4

0
BBB@

1
CCCA ¼ 0; ð40Þ

where

a11 ¼ 2Rzl1 þ ðR � z2Þ; a12 ¼ �2A0zðl1 þ RzÞ;

a13 ¼ � 2B0vSbðSkl1 þ vCkÞ; a14 ¼ �2B2
0vSaðCkl1 þ vSkÞ

a21 ¼ � 2zðl1 þ RzÞ; a22 ¼ �A0ð2Rzl1 þ R � z2Þ;

a23 ¼ � 2B0vSbðCkl1 � vSkÞ; a24 ¼ 2B2
0vSaðSkl1 þ vCkÞ

a31 ¼BzbðSkl1 � 0�5zCkÞ; a32 ¼ �AzbðCkl1 þ 0�5zSkÞ;

a33 ¼ 2zppl1 þ p2 � v2 � 3

8
p2B2

0 � 0:5mqA0z2 1 � B2
0

2

� �
Ck

a34 ¼ � B0 2vl1 � ð�2zppv þ 0�5mqA0z2 1 � B2
0

4

� �
SkÞ

� �
;

a41 ¼ � BzaðCkl1 þ 0:5zSkÞ; a42 ¼ �AzaðSkl1 � 0�5zCkÞ

a43 ¼ � 2vl1 � 2zppv þ 0�5mqA0z2 1 � B2
0

4

� �
Sk;

a44 ¼ � B0 2zppl1 � ðv2 � p2 þ 3

8
p2B2

0 � 0�5mqA0z2CkÞ
� �

ð41Þ

and

Az ¼ A0B0zmq; Bz ¼ B0zmq; Ck ¼ �
v2 � p2 þ 1

8
p2B2

0

0�5mqA0z2
; Sk ¼ �

2zppz

0�5mqA0z2
ð42Þ

The stability of the harmonic solutions can be investigated by extracting the root of the
following characteristic equation:

aij

�� �� ¼ 0: ð43Þ

4. RESULTS AND DISCUSSIONS

Figure 3 shows the amplitude curves of A1;A2 obtained by equations (17) and (18). For
example, let us divide the oscillation area as shown in Figure 3 in the case of zp ¼ 0�01 into
three sections, and analyze them concretely. First, in the section between points j and k;
since any value of parameter c in equation (31) is negativeðA25A1Þ; it is seen that there is
only single harmonic balance solution for amplitude B; no matter whether the parameter b

is positive or negative. And the unstable motion of the system in this section can be
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Figure 3. The vibration ranges of the pendulum (m ¼ 0�5; q ¼ 0�01; l ¼ 0�1; p ¼ 0�5; z ¼ 0�01; zp ¼ 0�01). A1

obtained by equation (17) -��-; A2 obtained by equation (18) in the case of zp ¼ 0�01; }}; A2 in the case of
zp ¼ 0�05; - - -; A2 in the case of zp ¼ 0�1 -�-.

0.80 0.85 0.90 0.95 1.00 1.05

0

10

20

30

40

50

z4

z3

z2z1
k

jA

z

0.80 0.85 0.90 0.95 1.00 1.05

0.0

0.1

0.2

0.3

0.4

0.5

0.6

B
/π

z

(a)

(b)

Figure 4. Responses of the system with zp ¼ 0�01 (m ¼ 0�5; q ¼ 0�01; l ¼ 0�1; p ¼ 0�5; z ¼ 0�01): (a) the
primary system; (b) the pendulum. Stable solution by HM (–); unstable solution by HM (- - -); stable
solution by IHM (}}); unstable solution by IHM (- - -); periodic solution by RKG (*); non-periodic solution
by RKG (*).
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confirmed by equation (43). Second, in the section of points j and k; since parameter c

equals zero ðA2 ¼ A1Þ; there are two solutions for B; 0 and
ffiffiffiffiffiffiffiffiffiffiffiffiffi
�b=a;

p
if b50; while there is

only one solution which equals zero for the case of b > 0: Moreover, in the sections lower
than point j and upper k; since parameter c is positive ðA2 > A1Þ there is no solution or
exist two solutions for B; depending on whether b is positive or negative. And the
oscillation of the systems can also be determined by using equation (43). If the solution is
stable, the state of oscillation exists; otherwise it does not. The following results show that
there are two solutions in the two sections in the case of zp ¼ 0�01: In the section lower
than point j; one solution is stable for some value of z; while another is unstable for all z:
But in the section upper than k; all the two solutions are completely unstable.

The responses obtained by both harmonic balance method (HM) and improved
harmonic balance method (IHM), and the responses obtained by numerical calculation
(Runge–Kutta–Gill) are shown in Figure 4 in the case of zp ¼ 0�01; 0�03 in Figure 5, and
also zp ¼ 0�05 in Figure 6 respectively. Here, numerical results shown in these figures are
the one with respect to different initial conditions (y0¼ �3�023�0; ’yy0 ¼ 0).

It is obvious from Figure 4 that the solutions of IHM are closer to the results of
numerical calculation compared to those of HM. Especially, the solutions of HM are quite
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Figure 5. Responses of the system with zp ¼ 0�03 (m ¼ 0�5; q ¼ 0�01; l ¼ 0�1; p ¼ 0�5; z ¼ 0�01): (a) the
primary system; (b) the pendulum. Stable solution by HM (–); unstable solution by HM (- - -); stable
solution by IHM (}}); unstable solution by IHM (- - -); periodic solution by RKG (*); non-periodic solution
by RKG (*).
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Figure 6. Responses of the system with zp ¼ 0�05 (m ¼ 0�5; q ¼ 0�01; l ¼ 0�1; p ¼ 0�5; z ¼ 0�01): (a) the
primary system; (b) the pendulum. Stable solution by HM (–); unstable solution by HM (- - -); stable
solution by IHM (}}); unstable solution by IHM (- - -); periodic solution by RKG (*); non-periodic solution
by
RKG (*).
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different from the numerical results, but the solutions of IHM show characteristics similar
to the numerical results in the case of z > 1: In addition, there is a peak on the right-hand
side of the response curve of the primary system and pendulum respectively. It shows that
the vibration of the pendulum does not suppress the vibration of primary system but
increase. In the area where z is small, the solutions of both HM and IHM show differences
with numerical results. Due to the assumption of 1 � B2=6 � 1 and 1 � B2=12 � 1; the
error of HM in calculation increases along with the increase in amplitude B: Also with the
increase in amplitude B; the error of IHM in calculation becomes big. It is seen from
Figure 4 that if the value of B=p is larger than 0�4, the approximate solutions and their
stabilities are not consistent with the results of numerical calculation. Their inconsistencies
may also result from using the third order approximation of Taylor series in equations (7)
and (8).

Figure 5 shows three results of the primary system and pendulum in the case of zp ¼
0�03: For this case the largest value of B=p is less than 0�3 and even though there are some
differences between the results of HM and numerical calculation, the results of IHM are
entirely consistent with those of numerical solution. It is also seen that peaks on the
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right-hand side of the response curves of the primary system and pendulum are shorter
than those in Figure 4, which is the case zp ¼ 0�01: Moreover, Figure 6 shows three results
of the primary system and pendulum in the case of zp ¼ 0�05: It is clear that the three
results coincide completely in the whole area.

In addition, it is seen from Figure 4(a) that the area z1 � z2 is a vibration absorbing
area, which can be obtained by solving equations (28) and (17). And the area of unstable
motion (non-periodic, chaotic motion) z3 � z4 is also seen in the vibration absorbing area,
which can be obtained by using equation (43). The area of unstable motion is found in
Figures 4 and 5, that is, it occurs in the cases of zp ¼ 0�01 and 0�03, and becomes larger
along with the increase in amplitude B of the pendulum. However, it does not appear in
Figure 6 in the case of zp ¼ 0�05: Consequently, it is seen that the area of unstable motion
obtained by three methods is fundamentally consistent.

5. CONCLUSIONS

In this paper, the vibration response of the spring–mass–damper system with a
parametrically excited pendulum hinged to the mass has been investigated by using the
harmonic balance method and the results verified by numerical calculation. The third
order approximations are used to analyze the response characteristic and the stability of
the system. The approximate results show the solutions to be not reliable for B=p > 0:4 in
the lower area of z; but sufficient accuracy for B=p50�3 in all area of z: And, the stability
analysis shows the area of unstable motion of the system obtained from the third order
approximations to be fairly consistent with that obtained from numerical calculation.
That is, the third order approximation is useful in some amplitude range of the pendulum.

It is shown that the amplitude curves of A1 and A2 divide the oscillation area of the
primary system into three sections. By evaluating whether the parameters of the quadratic
equation are positive or negative, the variation of the solution of the pendulum in number
in each section can be clarified simply. It is also shown that the solutions and their
characteristics of the system can be obtained simply by using the quadratic equation on the
response equation.
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