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SYSTEM WITH A PARAMETRICALLY EXCITED
PENDULUM

Y. SoNG, H. SATO, Y. IWATA AND T. KOMATSUZAKI

Department of Human & Mechanical Systems Engineering, Kanazawa University, 2-40-20 Kodatsuno,
Kanazawa 920-8667, Japan. E-mail: sato@t.kanazawa-u.ac.jp

(Received 31 July 2001, and in final form 11 April 2002)

The vibration response of a spring-mass—damper system with a parametrically excited
pendulum hinged to the mass is investigated using the harmonic balance method. The
approximate results are found to be fairly consistent with those obtained by the numerical
calculation. The vibrating regions of the pendulum system are obtained which are similar to
those given by Mathieu’s equation. Based on the analysis of three parameters in the
response equation, the characteristics of response of the system are clarified. The stabilities
of the harmonic solutions are analyzed, and finally our proposed approximation is verified
compared with the numerical results.

© 2002 Elsevier Science Ltd. All rights reserved.

1. INTRODUCTION

There have been a few reports on the analysis of a two-degree-of-freedom dynamic
vibration absorber system using a parametrically excited pendulum. Haston and
Barr [1] introduced an autoparametric vibration absorber system in which the response
is limited to be harmonic, and studied the vibration characteristics of the so-called
model “‘autoparametric vibration absorber”. Bajaj ef al. [2] used the method of averaging
to study forced, weakly non-linear oscillations of a two-degree-of-freedom auto-
parametric vibration absorber system in resonant excitation. A complete bifurcation
analysis of the averaged equations is undertaken for the subharmonic case of both internal
and external resonances, where the first order approximation of system response is
obtained. Banerjee e al. [3] presented a detailed stability analysis for the same system
using the second order averaging of the system. Hatwal et al. [4, 5] employed the harmonic
balance method and direct numerical integration to study a variant of the same system
at moderately higher levels of excitation, and observed that over some ranges of force
frequency and amplitude, the system response presented an amplitude and phase
modulated harmonic motion. For higher excitation levels, the response was found to
be chaotic. Also, Hatwal et al. [6] studied the characteristics of the autoparametric
vibration absorber system in which two types of restoring force on the pendulum were
considered. Furthermore, Yabuno et al. [7] investigated the stability of 1/3 order
subharmonic resonance of the system.

In these studies, the vibration characteristics of the system such as the steady state
solutions, and conditions causing bifurcation and chaotic motion, were investigated using
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approximate methods. However, the methods used in these studies either depend on a
small parameter, or are very complicated. Therefore, it is necessary to consider how to
make analytical process simple.

We observed the response of a dynamic vibration absorber system using a
parametrically excited pendulum by the numerical calculation in the previous study [8].
The vibration-absorber characteristics of the system for the change of the parameters are
clarified. Based on the analysis of the vibration-absorber characteristics, the optimum
parameters of the system are obtained. In this paper, the characteristics of responses of the
primary system and pendulum are analyzed using the harmonic balance method and the
third order approximation of Taylor’s series. The behavior of the system is clarified, and
our approximation is also verified by comparing with the numerical solutions.

2. EQUATIONS OF MOTION

Figure 1 shows the two-degree-of-freedom dynamic vibration absorber system with a
parametrically excited pendulum, in which the primary system consists of the mass M, the
linear spring with stiffness k, and the viscous damper represented by coefficient ¢. The
second system comprises of a simple pendulum of mass m, hinged at M. The distance
between the supporting point and the center of gravity of the pendulum is /, J and ¢y
represent the inertia moment with respect to the supporting point and the damping
coefficient of the pendulum respectively. The primary system is excited directly by a
harmonic force f(¢) = F cos wt.

The equations of motion of the system are

(M +my)5 + cx + kx + myl(6sin 0+ 6” cos 0) = £ (1), (1)

JO + co + (mygl + my,l%)sin 0 = 0, (2)

where x is the displacement of M, 0 the angle of rotation of the pendulum, and the dot
denotes the derivative with respect to the time ¢.
Equations (1) and (2) can be written in the following non-dimensional forms:

2( 1 A . 1

" ’ /" 2 _

u' + Y + T +/lu+q(1 ) (0"sinf + 0~ cost) = T 7 Sos2T, (3)
0" +20,p0 + (p* + uqu’)sing = 0, (4)
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Figure 1. Autoparametric dynamic vibration absorber system.
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where
2e=c/M, cui:k/M, A=m,/M, a);:m,,gl/J,

u:mplz/J7 2e, =co/J, xgq=F]k,
U=X/Xg, pP=wp/0, z=uw/w,,
q:x‘\'l‘/h (ZS/CU”, Cp :Sp/wlh T:wnt

and the prime in equations (3) and (4) represents the derivative with respect to the non-
dimensional time 7.

3. HARMONIC SOLUTIONS OF THE SYSTEM

Since the exciting force f(¢z) on the right-hand side of equation (1) is harmonic, the
steady state solution of the primary system is supposed to be harmonic with the same
frequency z as the exciting force. On the other hand, that of the pendulum is taken as
harmonic with frequency v = z/2 due to parametrically excited vibration. i.e.,

u = Acos(zt + ¢), 6 = Bcos(vt + ). (5,6)

Expanding sin 6 and cos 6 terms in equations (3) and (4) to the third order in Taylor
series, and substituting equations (5) and (6) into equations (3) and (4), the following
equations are obtained:

— Az* cos(zt + ) + %E;L( Azsin(zt + ¢) + j_ g (zt 4+ @)
+ M(( B+ 2154) cos(zt + ¢p)cos(2p — ¢)

2 2
i ( 22 _ 11234) sin(zt + ¢)sin(2p — ¢) + 1—123400s4(vr + (p)>

=1 l)t(cos(zr + ¢)cose + sin(zt + ¢)sing), (7)

sz2
_ <U2 + T —p2)BCOS(UT + (,0) — ZCppUB Sil’l(UT + QD)

uqAz*B

A ’B
e el >cos vt + @)cos(2p — @) — 3

24

Az*B
1— )cosS (vt + @)cos(2p — ¢) — & 22

2 2 p3
( f )sm vT + @)sin(2p — @) —licos 3(vt + @)

2 23
( - %) sin3(vt + @)sin(2p — ¢) + 'quj—chos(Svr +3p+¢)=0. (8)
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By comparing coefficients of corresponding sine and cosine terms, the following four
equations are obtained:

1 s I B B !
2z v B? B\ . |
1+2A+q(1+2)(1_12>Sm(2q)—¢)_1”sm¢’ )
2 (B
P op el p  HEA 2 cos(2¢ — ¢) =0, (11)
8 2 6
72 A B\ .
20,p0 + “q2 (1 - 12) sin(2p — ¢) = 0. (12)

Equations (9) and (10) yield

o R Hszz4 sp?

T T|| 16 ' 8ug

(R— 22)}}5'4 + %{ {2(R— (/4 - p») + 4CCpRpZZ}B2] ,

(13)

> 3. g2 2p2(2 2 o
tang = [_2Rng +M]/[(R—z2)A+2Sp Bl —r+rB /8)} (14)
ugA ngA

and equations (11) and (12) yield

4 4 2052 /4 — 2
4= 2@ G+ B L]y
2
tan(2o - 6) = e/ (2/4 -+ 5B, (16)
where
- % S = ﬁ, T =(R—-z22)"+ (2LRz)%.

Here 1 — B?/6 and 1 — B?/12 are regarded as one; however, their detailed description is
given later.

3.1. VIBRATION REGIONS OF THE PENDULUM SYSTEM

Setting amplitude B of the pendulum in equations (13) and (15) as zero, then the
following equations are obtained:

AL =RT, 4=

/4= + (Gr2)?) (17,18)
(ngz?)
Here, A; is the amplitude of the primary system when the pendulum does not vibrate
(locked mass), and A, can be considered as the amplitude of the first order vibration
region of the pendulum. The reasons can be explained as follows.
When 60 is so small, sin 0 is replaced by 6 in equation (4) rendering it to the following
form:

0" +20,p0 + [p* + uqu')0 = 0. (19)
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Equation (19) is identical to Mathieu’s equation [9] with additional damping term. It
can be transformed into the standard form as

d_zy + (d —2ecos2s)y =0 (20)
dsz l)_ I

where
2=zt+¢, y=0exp(,ps/z), d=4p*(1-0)/z, e=2uqA,

where 7y is the function of s and o, where ¢ is a parameter with respect to d and e.
0 in equation (20) can be expressed as follows:

0 = 3(s, 3)exp(~24,ps)2). (21)

By considering the first order term of e, the following are obtained:

d~1—ecos2o, —2(,p/z~ —lesin2o. (22,23)

Substituting the expressions of d and e into equations (22) and (23) yields

z? Az? Az
(Z —p*+ Cjz,p2> — %00520 =0, {ppz — o sin2o = 0. (24)
Moreover, the following equation is derived from equation (24):
4
A = 51274 = P+ Cp*) + (Lp2))- (25)

(ngz?)
It is clear that 4, denotes the amplitude of the oscillating boundary of the pendulum

system by comparing equation (25) with equation (18). Therefore, the vibration of the
pendulum must occur if A, is larger than 4, [10].

3.2. HARMONIC SOLUTIONS OF THE SYSTEM

The amplitude A4 of the primary system determined by equations (13) and (15) must
coincide while the pendulum is oscillating. Hence, the equation related to the amplitude B
of the pendulum is described as

1 S2 4 S 2 1 4
{ +p(Rzz)}+ g

P(2/4 - p?)
+ m[(zz/4 — )+ (Gp2)] - T~ 0

and the amplitudes of both primary system and pendulum can be obtained by

b+ VP da . 2
e (uqzz)zl(fﬂ—pz +”T) +HCep2)?|,  (27,28)
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where

1524 SZ 4 1
e (29)

P
=== 4 2 (R g -
=776 g Z)}‘Lm(uqzz)z’

_1 S 2 z 2 2 (22/4_192)172 2 2
b_T%[Z(R—Z)<Z—p>+4C§pRpZ +W, c=4;—47.  (30,31)

From equations (27) and (28), the relation between the amplitudes of primary system
and pendulum is determined when they exhibit harmonic vibration. Thus, it is recognized
that there are at most two steady state solutions at their respective frequencies for
equations (5) and (6).

Setting the parameter a in equation (29) as zero, and neglecting the higher order terms
of z, yields

2

4 4 4
P 2SRuq\ 4 PR o PR
£ (2228 42 2y ahp— 2
16( + 7 )z 8( R )z + T 0 (32)

There is no real solution for equation (32), hence the parameter ¢ may not become zero.
Also a is represented as a continuous function of z, and it becomes positive when z is so
small. Therefore, a can be regarded as positive. Accordingly, the variation of the solution
of B in number can be verified simply by evaluating whether the sign of b and c¢ is positive
or negative, which is summarized as follows:

Case I: ¢<0, there is only one solution for B no matter b is positive or negative.

Case II: ¢ = 0, there are two solutions for B if <0, such as 0 and \/—b/a respectively.
However, there is only one solution that is equal to zero if » > 0.

Case I1I: ¢ > 0, if b<0 and (b*> — 4ac) > 0, there are two solutions for B. On the other
hand, for the case of b > 0 or (b* — 4ac) <0, there is no solution.

Figure 2 shows an image about the number of solutions for amplitude B. The curve is
drawn through calculating the values of b and ¢ in terms of z, while z is determined by
setting (b* — 4ac) = 0 with the condition of {, = 0-001—0-01.

If 1 — B2/6 and 1 — B*/12 in equation (26) are considered and they are written in the
following forms:

«u=1-8*/12, p=1-B*/6.
Equation (26) becomes

1{5224 2 %(Rzz)a} 1 p*

S +——5——|B*
16 8uq (ugz2)* 164

T

1S o PX(2/4 - p*)
G e B B
2
(uqz2)2[<zz/4—pz%+ R )

Equation (33) gives the improved solution of the harmonic balance method.
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Figure 2. The number of solutions changes along with the parameter a, b, ¢ ({ =001, u =05, 2 =01,
q =001, {, = 0-001-0-01) (h* — 4ac) = 0 ——; one solution I(1); two solutions I1(2); no solution ITI(0).

3.3. STABILITY OF HARMONIC SOLUTION

In order to investigate the stability of the harmonic solutions (5) and (6), small variables
from periodic state denoted by J() are given as follows:

A=Ay +0A4, = py+3¢p,  B=By+B, ¢=p,+ 00, (34)

where Ao, Bo, ¢y, ¢, are the solutions obtained by the harmonic balance method.
Substituting equations (34), (5) and (6) into equations (3) and (4), and equating the
respective coefficients of sine and cosine terms the following four equations are obtained:

QR(GA + (R — )34 — 240z5¢' — 2R Ayz0¢p + S|—2Boufsin B’
— 2Byv* B cosypdB — 2Bjva cos ydg' + 2B asin yde] = 0, (35)

—220A4" —2R(OA — 2R A0S + Ao(2> — R)o¢ + S[—2Bovfi cos Yo B’
+ 2Bov? B sin 3B + 2Bjvasin o’ + 2Biv*e cos yde] = 0, (36)

ugBozp sin ydA" — 0-5ugByz>f cos Yo A
— ngAyByzp cos Yo' — 0-SugAgBoz>f sin ¢

BZ
+2¢(,péB + KPZ - - % ngg) —0.5u¢Byz* (1 — 7°> cos lﬁ:| 8B — 2Byvd¢’

B2
+ [—2@,,17301; + 0-5uqAgByz* (1 — TO> sin W] dp =0, (37)

— ugByzo.cos YA — 0-5ugByz o sin oA
— uqAoBozosin ¢’ + 0-5uqAgBoz* o cos Yo

B2
— 200B + |:—2C[,pv —0-5ugAyz* (l — ZO> sin l//:| 0B

—20,pByd¢’ + By K}ﬂ —v® + épzzﬁ) — 0-5uqAyz* cos 1//] 5o =0, (38)
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where y = 2¢ — ¢. Assuming
04 = X", 0¢ = XoeMT, OB = XzeM, ¢ = XseM". (39)
Substituting equation (39) into equations (35)—(38) yields
ajp app  apz  ag X
ay  axn axp au || X2
asi axn azp au || X3

a1 A4 a43 Q44 Xy

where
apg =2R{A + (R — 22), app = —2A02(}~1 + RC)7
ai3 = — 2BouSB(Sii1 +vCy),  aig = —2BjvSa(Cily + vSk)
a = —2z(21 + RY), an = —A¢(2R{Jy + R—2%),
a3 = — 2B()US,B(C/€)N1 - USk), apg = 2351)50((5'/(21 + UCk)
as1 = B:f(Skd1 — 0-52C), an = —A:p(Crly +0-525),
3 B;
azy =20,pi +p* —v* — gszﬁ —0.5uq 47 (1 - 70> Ck
B2
azxy = — By |:2l)/ll — (—2{17[71) + O'S,UQAOZz <1 - 40) Sk)] ’
as = — BZOC(C/().I + O.SZS]()7 ag = —AZOC(Sk)Vl - 0~52Ck)
BZ
agy = — 204y — 20,pv + 0-5uqAoz’ (1 - TO> Sk,
3
au = — By [2@1&1 — (W =-p+ gszﬁ — 0-5uq40=° Ck)] (41)
and
1.)2 - p2 + %p2Bé _ ZCppZ

A; = AoBozug, B.= Bozpq, Cp=-— «

0-5uqAoz? 0-5ugA¢2? (42)
The stability of the harmonic solutions can be investigated by extracting the root of the
following characteristic equation:

|ag| = 0. (43)

4. RESULTS AND DISCUSSIONS

Figure 3 shows the amplitude curves of A, 4, obtained by equations (17) and (18). For
example, let us divide the oscillation area as shown in Figure 3 in the case of {, = 0-01 into
three sections, and analyze them concretely. First, in the section between points j and k,
since any value of parameter ¢ in equation (31) is negative(A4, < A4,), it is seen that there is
only single harmonic balance solution for amplitude B, no matter whether the parameter b
is positive or negative. And the unstable motion of the system in this section can be
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Figure 3. The vibration ranges of the pendulum (u = 0-5, ¢ = 0-01, A =0-1, p = 0-5, { = 001, {, = 0-01). 4,
obtained by equation (17) ---; 4> obtained by equation (18) in the case of {, = 0-01, ——; A4, in the case of
{, = 005, ---; 4> in the case of {, = 0-1 ---.
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0.80
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Figure 4. Responses of the system with {, =001 (u=0-5 ¢=001, =01, p=0-5 {=001): (a) the

primary system; (b) the pendulum. Stable solution by HM ¢

); unstable solution by HM (- - -); stable

solution by IHM (——); unstable solution by IHM (- - -); periodic solution by RKG (Q); non-periodic solution

by RKG (@).
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confirmed by equation (43). Second, in the section of points j and k, since parameter ¢
equals zero (4, = A1), there are two solutions for B, 0 and \/—b/a, if b<0; while there is
only one solution which equals zero for the case of b > 0. Moreover, in the sections lower
than point j and upper k, since parameter ¢ is positive (4, > A;) there is no solution or
exist two solutions for B, depending on whether b is positive or negative. And the
oscillation of the systems can also be determined by using equation (43). If the solution is
stable, the state of oscillation exists; otherwise it does not. The following results show that
there are two solutions in the two sections in the case of {, = 0-01. In the section lower
than point j, one solution is stable for some value of z, while another is unstable for all z.
But in the section upper than k, all the two solutions are completely unstable.

The responses obtained by both harmonic balance method (HM) and improved
harmonic balance method (IHM), and the responses obtained by numerical calculation
(Runge-Kutta—Gill) are shown in Figure 4 in the case of {, = 0-01, 0-03 in Figure 5, and
also {, = 0-05 in Figure 6 respectively. Here, numerical results shown in these figures are
the one with respect to different initial conditions (6y= —3-0—3-0, 6y = 0).

It is obvious from Figure 4 that the solutions of IHM are closer to the results of
numerical calculation compared to those of HM. Especially, the solutions of HM are quite

35

301

0 " 1 " 1 " 1 " 1 " 1 " 1 " 1 "
088 090 092 094 09 098 100 1.02 1.04

@ z
0.35

0.30
025 \

L N 280
0.20 . .. 3

B/t

015 F \
010 F \

0.05 | \

0.00@000000000, . . . 00000
088 090 092 094 09% 098 100 102 104
(b) z

Figure 5. Responses of the system with {, =0-03 (u =05, ¢ =001, 2=0-1, p=0-5,{=001): (a) the
primary system; (b) the pendulum. Stable solution by HM ¢ ); unstable solution by HM (- - -); stable
solution by IHM (——); unstable solution by IHM (- - -); periodic solution by RKG (Q); non-periodic solution
by RKG (@).
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090 092 094 09 098 100 102 1.04
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0.20 -

0.16 -

012
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0.04

O.OOTOOOOOO 000000000
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Figure 6. Responses of the system with {, =005 (u=0-5, ¢ =0-01, A=01, p=05,{=001): (a) the
primary system; (b) the pendulum. Stable solution by HM ¢ ); unstable solution by HM (- - -); stable
solution by IHM (—); unstable solution by IHM (- - -); periodic solution by RKG (Q); non-periodic solution
by
RKG (@).

different from the numerical results, but the solutions of IHM show characteristics similar
to the numerical results in the case of z > 1. In addition, there is a peak on the right-hand
side of the response curve of the primary system and pendulum respectively. It shows that
the vibration of the pendulum does not suppress the vibration of primary system but
increase. In the area where z is small, the solutions of both HM and IHM show differences
with numerical results. Due to the assumption of 1 — B>/6 ~ 1 and 1 — B>/12 ~ 1, the
error of HM in calculation increases along with the increase in amplitude B. Also with the
increase in amplitude B, the error of IHM in calculation becomes big. It is seen from
Figure 4 that if the value of B/x is larger than 0-4, the approximate solutions and their
stabilities are not consistent with the results of numerical calculation. Their inconsistencies
may also result from using the third order approximation of Taylor series in equations (7)
and (8).

Figure 5 shows three results of the primary system and pendulum in the case of {, =
0-03. For this case the largest value of B/ is less than 0-3 and even though there are some
differences between the results of HM and numerical calculation, the results of IHM are
entirely consistent with those of numerical solution. It is also seen that peaks on the
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right-hand side of the response curves of the primary system and pendulum are shorter
than those in Figure 4, which is the case {, = 0-01. Moreover, Figure 6 shows three results
of the primary system and pendulum in the case of {, = 0-05. It is clear that the three
results coincide completely in the whole area.

In addition, it is seen from Figure 4(a) that the area z; — z; is a vibration absorbing
area, which can be obtained by solving equations (28) and (17). And the area of unstable
motion (non-periodic, chaotic motion) z3 — z4 is also seen in the vibration absorbing area,
which can be obtained by using equation (43). The area of unstable motion is found in
Figures 4 and 5, that is, it occurs in the cases of {, = 0-01 and 0-03, and becomes larger
along with the increase in amplitude B of the pendulum. However, it does not appear in
Figure 6 in the case of {, = 0-05. Consequently, it is seen that the area of unstable motion
obtained by three methods is fundamentally consistent.

5. CONCLUSIONS

In this paper, the vibration response of the spring—mass—damper system with a
parametrically excited pendulum hinged to the mass has been investigated by using the
harmonic balance method and the results verified by numerical calculation. The third
order approximations are used to analyze the response characteristic and the stability of
the system. The approximate results show the solutions to be not reliable for B/n > 0.4 in
the lower area of z, but sufficient accuracy for B/n<0-3 in all area of z. And, the stability
analysis shows the area of unstable motion of the system obtained from the third order
approximations to be fairly consistent with that obtained from numerical calculation.
That is, the third order approximation is useful in some amplitude range of the pendulum.

It is shown that the amplitude curves of 4; and A, divide the oscillation area of the
primary system into three sections. By evaluating whether the parameters of the quadratic
equation are positive or negative, the variation of the solution of the pendulum in number
in each section can be clarified simply. It is also shown that the solutions and their
characteristics of the system can be obtained simply by using the quadratic equation on the
response equation.
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